# Introduction

It is a very rare fact that a model of interacting degrees of freedom can be *exactly* solved^{[1]}, and generally a model is not solvable in any dimension (think about the Ising model) so we must find other ways to study such systems in order to understand the possible occurrence of phase transitions and their behaviour near possible critical points. The most simple method, and the first to which one usually resorts to, is the so called *mean field approximation*.
One common feature of mean field theories is the identification of an appropriate order parameter; then, in very general and abstract words, there are two different approaches that can be taken (we shall see both):

- approximating an interacting system by a non-interacting one in a self-consistent external field expressed in terms of the order parameter

- expressing an approximate free energy in terms of this parameter and minimize the free energy with respect to the order parameter

In other (and maybe clearer) words, the first approach consists in substituting a system of interacting degrees of freedom with another system where these degrees of freedom do not interact but are subject to the action of an external *mean field*, which approximates the action of all the degrees of freedom on a single one; the second approach on the other hand is an "extension" in statistical mechanics of variational principles.

In order to be a little bit more explicit, let us see how the first approach applies to the Ising model^{[2]}. In the case of nearest-neighbour interactions, the reduced Hamiltonian of the system is:

*next nearest neighbours*) this internal field can be approximated with the

*mean field*generated by

*all*the other spins in the lattice:

*only if the dimensionality of the system is large enough*.

Let us now come back to the general properties of mean field theories.
One of the main features of mean field theories is that they neglect the effects of fluctuations in the order parameter (in other words, within mean field theories the order parameter is supposed to be constant over all the system): on one hand we will see that this will make it possible to study a lot of systems, and to obtain loads of interesting and useful information about them, but on the other one we will see that this will be fatal for the reliability of mean field theories in the proximity of critical points, since they are characterised by the divergence of long-ranged fluctuations (see Long range correlations). This also means that mean field theories are in any case rather efficient far from critical points.